The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances gemcitabine-induced cell death in pancreatic cancer.
نویسندگان
چکیده
PURPOSE Pancreatic cancer is an aggressive human malignancy that is generally refractory to chemotherapy. Histone deacetylase inhibitors are novel agents that modulate cell growth and survival. In this study, we sought to determine whether a relatively new histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), inhibits pancreatic cancer cell growth. EXPERIMENTAL DESIGN The effects of SAHA on the growth of three pancreatic cancer cell lines (BxPC3, COLO-357, and PANC-1) were examined with respect to cell cycle progression, p21 induction and localization, and interactions with the nucleoside analogue gemcitabine. RESULTS SAHA induced a G(1) cell cycle arrest in BxPC-3 cells and COLO-357 cells but not in PANC-1 cells. This arrest was dependent, in part, on induction of p21 by SAHA, as p21 was not induced in PANC-1 cells, and knockdown of p21 using small interfering RNA oligonucleotides nearly completely suppressed the effects of SAHA on cell cycle arrest in COLO-357 and partly attenuated the effects of SAHA in BxPC-3. COLO-357 and BxPC-3 cells, but not PANC-1 cells, were also sensitive to gemcitabine. In the gemcitabine-resistant PANC-1 cells, a 48-h cotreatment with SAHA rendered the cells sensitive to the inhibitory and proapoptotic effects of gemcitabine. An additive effect on growth inhibition by SAHA and gemcitabine was observed in COLO-357 and BxPC-3 cells. Moreover, analysis of p21 distribution in COLO-357 cells revealed that SAHA induced the cytoplasmic localization of both p21 and phospho-p21. CONCLUSIONS These data indicate that SAHA exerts proapoptotic effects in pancreatic cancer cells, in part, by up-regulating p21 and sequestering it in the cytoplasm, raising the possibility that SAHA may have therapeutic potential in the treatment of pancreatic cancer.
منابع مشابه
The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells.
Histone deacetylases (HDACs) mediate changes in nucleosome conformation and are important in the regulation of gene expression. HDACs are involved in cell cycle progression and differentiation, and their deregulation is associated with several cancers. HDAC inhibitors have emerged recently as promising chemotherapeutic agents. One such agent, suberoylanilide hydroxamic acid, is a potent inhibit...
متن کاملSelective inhibition of histone deacetylase 2 induces p53-dependent survivin downregulation through MDM2 proteasomal degradation
In the present study, we found that selective inhibition of histone deacetylase 2 (HDAC2) with small inhibitory RNA (siRNA) induced survivin downregulation in a p53-dependent manner. Interestingly, suberoylanilide hydroxamic acid (SAHA) or knockdown of HDAC2 induced downregulation of Mdm2, a negative regulator of p53, at the protein level. SAHA and/or HDAC2 siRNA increased Mdm2 ubiquitination, ...
متن کاملThe epigenetic agents suberoylanilide hydroxamic acid and 5‑AZA‑2' deoxycytidine decrease cell proliferation, induce cell death and delay the growth of MiaPaCa2 pancreatic cancer cells in vivo.
Despite incremental advances in the diagnosis and treatment for pancreatic cancer (PC), the 5‑year survival rate remains <5%. Novel therapies to increase survival and quality of life for PC patients are desperately needed. Epigenetic thera-peutic agents such as histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) have demonstrated therapeutic benefits in human can...
متن کاملHistone deacetylase inhibitors enhance lexatumumab-induced apoptosis via a p21Cip1-dependent decrease in survivin levels.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) preferentially induces apoptosis in malignant cells by binding to the death receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5). Several agents that therapeutically exploit this phenomenon are being developed. We investigated the anticancer activity of two novel, highly specific agonistic monoclonal antibodies to TRAIL-R1 (mapatumumab, HGS...
متن کاملAnti-Tumor Effect in Human Lung Cancer by a Combination Treatment of Novel Histone Deacetylase Inhibitors: SL142 or SL325 and Retinoic Acids
Histone deacetylase (HDAC) inhibitors arrest cancer cell growth and cause apoptosis with low toxicity thereby constituting a promising treatment for cancer. In this study, we investigated the anti-tumor activity in lung cancer cells of the novel cyclic amide-bearing hydroxamic acid based HDAC inhibitors SL142 and SL325. In A549 and H441 lung cancer cells both SL142 and SL325 induced more cell g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 13 1 شماره
صفحات -
تاریخ انتشار 2007